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A quantum dynamical equation is constructed as the limit of a sequence of functions
(called Semiquantum momentum functions or SQMF). The quantum action variable
J is defined as the limit of the sequence of contour integrals of SQMFs such that the
quantization condition isJ = nh, wheren is a nonnegative integer for eigenvalues
and a noninteger for off eigenvalues. This quantization condition is exact andJ is an
analytic function of energy. Based on new definitions, an accurate numerical method
is developed for obtaining eigenenergies. The method can be applied to both real and
PT symmetric complex potentials. The validity and the accuracy of this new method is
demonstrated with three illustrations.
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1. INTRODUCTION

During last few decades, various exact and approximation methods have been
developed for solving 1-D quantum mechanical systems. They include Rayleigh–
Schroedinger expansions summed by means of different techniques (Artecaet al.,
1990; Calicetiet al., 1996; Fern´andezet al., 1998; Simon, 1970), variational
procedures (Bozzoloet al., 1982), adjustable frequency iteration (Fanelli and
Struzynski, 1983), distributed Gaussian basis (Balsaet al., 1983), Laplace trans-
form (Flessaset al., 1983), strong coupling expansions (Guardiolaet al., 1992;
Turbiner and Ushveridze, 1988), continued fractions (Znojil, 1983) related to the
Hill determinant method (Hautot, 1986; Znojil, 1991), supersymmetry combined
with variational (Cooperet al., 1994) or WKB (Sinhaet al., 1996) techniques,
analytical Lanczos algorithm (Kaluza, 1994), semiclassical expansions comple-
mented with resurgence theory (Delabaere and Pham, 1997; Delabaereet al.,
1997), Kolmogorov iterative technique (Halperin, 1995), and open perturbation
applied to the associated Riccati equation (Bessis and Bessis, 1997).
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The work which is relevant to this study is the method based on quantum
action variable theory developed in 1980s by Leacocket al.(Leacock and Padgett,
1983a,b). Their method is mainly suitable for exactly solvable potentials for which
the eigenenergies can be obtained without solving the dynamical equations (see
(Leacock and Padgett, 1983a,b) for more details). Their method involves evaluating
the 1-D quantum action variable (QAV)J(E) defined as

J(E) =
∫

C
p(z, E) dz (1)

where the contour C encloses the physical turning points of classical momentum
function pc(z, E) in the complexz plane, andp(z, E) is the quantum momentum
function (QMF) which satisfies the equation

h

i

(
∂p(z, E)

∂z

)
+ p2(z, E) = p2

c(z, E) (2)

where pc(z, E) is defined bypc(z, E) = √E − V(z) (assume 2m= 1) and the
boundstate boundary conditions imposed uponp(z, E) is p(z, E)→ pc(z, E) as
h→ 0. The bound state eigenvalue expressions of exactly solvable potentials
can be obtained without solving the dynamical equation (Leacock and Padgett,
1983a,b; Nanayakkara, 1990). This method is somewhat similar to the higher
order WKB (Benderet al., 1977) method which also uses contour integrations
for obtaining higher order corrections to the basic Bohr–Sommerfeld quantization
(see (Benderet al., 1977) for more details). There are two features of QAV method
relevant to the present work:

(1) The quantum action variableJ(E) is not an analytic function of energy
E (It is a step-function)

(2) The application of the boundary condition is not clear when the system
is not exactly solvable

The QMF p(z, E) is related to the wave functionψ by p(z, E) = h
i
∂ψ/∂z
ψ

.
Therefore, the contour integral (1) gives the number of simple zeros ofψ which
are located between two turning points. By using oscillatory theorems on Sturm-
Liouville type equations (Ince, 1927), it can be shown that there are a finite number
of isolated zeros ofψ(x) and hence finite number of isolated poles ofp(z, E), lying
between two physical turning points for eigenvalues as well as for off eigenvalues.
Hence, the QAV is an integer valued function which gives the number of zeros of
the wave function between two physical turning points (see (Leacock and Padgett,
1983b)). As a result, when energyE varies, QAV jumps from one integer to the next
as a new zero entered inside the contour C. Consequently, QAV is not an analytic
function ofE.The quantum action variable used in (Leacock and Padgett, 1983a,b;
Nanayakkara, 1990) cannot be directly employed for locating bound state eigen
states numerically when the system is not exactly solvable. The main reason for
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this drawback is thatJ(E) changes only when a new zero ofψ entered between
two turning points which does not necessarily correspond to any special energy
values such as eigenenergies.

In this paper, we reformulate quantum action variable theory in terms of se-
quence of newly defined functions (we call them semiquantum momentum func-
tions – SQMF) and corresponding sequence of contour integrals (we call them
semiquantum action variables – SQAV) such that they converge to QMFp(z, E)
and QAV J(E), respectively, when certain conditions are satisfied by the poten-
tial. With this new approach, we developed an accurate numerical method. This
new method is applied to solve three potentials including PT symmetric complex
potentialv(x) = x4+ i Ax (Benderet al., 2001).

The outline of the paper is as follows. In Section 2, the basic theory is de-
veloped with proper quantization conditions. Section 3 contains explicit algebraic
form of new SQMFs and a description of the numerical method. Also we discuss
the convergence and the validity of the new method. In Section 4 the accuracy of
the numerical method is demonstrated with three illustrations.

2. QUANTUM ACTION VARIABLE THEORY

For 1-D quantum mechanical system with potentialv(z), a sequence of func-
tions{pk(z, E)}, k = 1, 2, 3,. . .n, is defined in the complexz plane by

p0(z, E) =
√

E − v(z), (3)

pn(z, E) =
√

E − v(z)+ i h
∂pn−1

∂z
, (4)

wherep0(z, E) is the usual classical momentum function, and the Eq. (4) defines
pn(z, E) in terms of the first derivative ofpn−1(z, E). Hence starting from Eq. (3),
the Eq. (4) can be used iteratively to definepk(z, E) for any k. Here we have
assumed 2m= 1. We call these functions “semiquantum momentum functions”
rather than semiclassical momentum function, in order to distinguish them from
WKB momentum (see Appendix A). When certain conditions are satisfied by the
potential,pk(z, E) converges uniformly ask→∞ in the domainD(E), which is
shown in Fig. 1, whenh is less than unity. This will be discussed in detail in the
Appendix A.

Let p̃(z, E) be the limit of the sequence. That is

p̃(z, E) = lim
n→∞ pn(z, E) ∀x ∈ D(E) (5)

For different energies, domainD(E) may change, as the turning points ofpk(z, E)
are functions of energy. However, for a given range of energies, a singleD(E) can
be defined such that it excludes turning points corresponding to all the energies
in the range and hence the limit in Eq. (5) exists for a range of energy values.
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Fig. 1. The complex plane on which the SQMF, SQAVs, and QAV are defined.
It can be shown that SQMF converges uniformly in the domainD(E). The
contour C in Eqs. (7) and (8) is shown as a broken curve in the domainD(E).

Consequently, the sequence{pk(z, E)}, k = 1, 2, 3,. . .n converges uniformly not
only in x but also inE.

The limiting function p̃(z, E) is defined to be the new quantum momentum
function satisfying the equation

p̃(z, E) =
√

E − v(z)+ i h
∂ p̃

∂z
(6)

Although thepk(z, E) converges uniformly tõp(z, E) only in the domainD(E),
p̃(z, E) can be analytically continued to the entire complex plane by defining it
with the Eq. (6) for allz.

Now we define semiquantum action variables (SQAV)Jk(E), k = 1, 2,
3, . . .n, as

Jk(E) = 1

2π

∫
C

pk(z, E) dz (7)

where the contour C encloses the “physical” turning points of the firstk SQMFs
and lies entirely in the domainD(E) (see Fig. 1). Sincepk(z, E) is uniformly
convergent,Jk(E) is also uniformly convergent, limk→∞ Jk(E) = J̃(E), and the
limit J̃(E) satisfies the equation

J̃(E) = 1

2π

∫
C

p̃(z, E) dz (8)

where p̃(z, E) satisfies Eq. (6) and the contour encloses the “physical” turn-
ing points of{pk(z, E)}, k = 1, 2, 3,. . .n. Now we introduce the quantization
condition imposed upoñJ(E) as

J̃(E) = nh (9)
wheren is a nonnegative integer.
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Note that by squaring both sides of Eq. (6) and rearranging it, we obtain

h

i

∂ p̃

∂z
+ p̃2(z, E) = E − v(z) (10)

which is equivalent to the Eq. (2), although̃p(z, E) is not identical top(z, E).
Identification of following features of new QMF̃p(z, E) and QAV J̃(E) is useful.

(a) The new QMF is a multivalued function ofx unlike the old QMF which
is single valued.

(b) The new QAV is a nonnegative integer timesh for eigenvalues and non-
integer timesh for off eigenvalues and it is analytic function ofE. The
old QAV is an integer timesh for all energies and it is discontinuous at
certain energies.

These features are utilized when the numerical methods are developed.

3. ANALYTIC FORM OF SQMF

The algebraic form ofp0(z, E) is given by Eq. (3);

p0(z, E) =
√

E − v(z)

Starting with Eq. (3) and using Eq. (4) iteratively, we obtain

p1(z, E) =
√

E − v(z)− i h
v′(z)

2p0
(11)

p2(z, E) =
√

E − v(z)+ i h
∂p1

∂z
with

∂p1

∂z
= −

(
v′

2p1
+ i hv′2

8p3
0 p1
+ i hv′′

4p0 p1

)
.

(12)

With mathematical packages such as Mathematica (Wolfram, 1988), it is easy to
obtain exact algebraic expressions up to any order of SQAV.

Now we are going to describe how to use new definitions to obtain eigenvalues
for a given quantum system. When the orders ofpk is four or above (i.e.k ≥ 4), it is
hard to implement the algebraic expressions ofpk(x, E) directly into a computer
code. The reason for this difficulty is that the expressions become so huge and
complicated that there is no easy way of breaking them (specially the square
roots) into simpler expressions. However, the recurrence relations ofpk (in Eq (4))
can easily be implemented by writing them in terms of new functionsξk(η) and
ηk(x, E), k = 0, 1,. . .n, which are suitable for computer implementations. The
newξk(η) andηk(x, E) are functions ofp0(x, E) and the derivatives of the potential.
The explicit forms ofξ0, ξ1, ξ2, ξ3, ξ4, andξ5 are given in Appendix B.
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The algebraic expressions of the quantum momentum function along with the
derivatives ofηk(x, E)’s are given below. The zeroth order SQMF can be written as

p0 = √η0 (13)

whereη0 = p2
0 = E − v(x). The derivatives ofη0 can be written in terms of the

derivative of the potential

∂kη0(x, E)

∂xk
= −dkv(x)

dkx
k = 1, 2,. . .n (14)

whereν(x) is the potential. Ther th order SQMFpr (x, E) is given by

pr = √ηr (15)

whereηr = η0+ i hξ1(ηr−1) and the derivatives ofηr are

∂kηr (x, E)

∂xk
= ∂kη0(x, E)

∂xk
+ i hξk+1(ηr−1) (16)

whereξr (η) = ∂r√η
∂xr and explicit forms ofξk(η) for k = 1, 2,. . .6 are given in

Appendix B.
Using Eqs. (13), (14), (15), and (16), one can write the SQMFs up to any order

in terms of the classical momentum function and the derivatives of the potential.
Note that the firstn derivatives ofη0 are needed to write thenth order SQMF. Note
also that in evaluating the semiquantum momentum functions, the derivatives of
η or ξk(η) are calculated analytically, not numerically.

4. ILLUSTRATIONS: BOUND STATE ENERGIES

In this section, we present results obtained by applying the new quantization
method described in the previous section to three different type of potentials.

(a) Potentialv(x) = x2+ a2

x2 with a2 = 0.1.
This system is exactly solvable (Nanayakkara, 1990) and the quan-

tum action variable is

J = E

4
− h

2
−
√

a2+ h2

4

2
(17)

For this potential there are four real turning points, two of them on the
positive real axis while the other two are on the negative real axis. Here
we have the freedom to choose any contour enclosing two turning points
on the positive real axis which excludes the origin (x = 0) where the
potential has a singularity. This system is studied with 7th order SQMF
and the contour integration is evaluated with a rectangular contour. The
results are presented in the Table I. The table shows that the error is less
than 10−10 for a 7th order calculation.
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Table I. Comparison Between the Exact and the Calculated Boundstate
Energies of the Potentialv(x) = x2 + a2

x2 (h = 0.001 anda2 = 0.1)

n Exact energy Calculated energy Error

0 0.6344563226025 0.6344563226025 < 10−11

1 0.6384563226025 0.6384563226025 < 10−11

2 0.6424563226025 0.6424563226025 < 10−11

3 0.6464563226025 0.6464563226025 < 10−11

4 0.6504563226025 0.6504563226025 < 10−11

5 0.6544563226025 0.6544563226026 ≈10−10

6 0.6584563226025 0.6584563226026 ≈10−10

7 0.6624563226025 0.6624563226026 ≈10−10

8 0.6664563226025 0.6664563226026 ≈10−10

9 0.6704563226025 0.6704563226026 ≈10−10

10 0.6744563226025 0.6744563226026 ≈10−10

Note that in this numerical method, SQMF has to be evaluated only at
the points of the contour and therefore it is computationally less expensive.

(b) Potentialv(x) = x4+ bx2.
This system cannot be solved exactly. For this potential, there are

four turning points: two of them are on the real axis and the other two are
on the imaginary axis.

±
[
−b+√b2+ 4E

2

]1/2

and ± i

[
b+√b2+ 4E

2

]1/2

Here we choose a contour of integration to enclose two real turning points
and to exclude the turning points on the imaginary axis. In this region the
sequencespn and Jn converges rapidly. The results of the calculations
carried out with 7th order SQMF for this potential are presented in the
Tables II and III.

The calculations were carried out for two values of the coupling para-
meter b. The exact eigenenergies of this potential were obtained by
expanding the wave function in simple harmonic basis and solving the
corresponding matrix eigenvalue problem. As shown in the Tables II
and III, the accuracy of the calculation increases with the quantum num-
bern. This asymptotic behavior can be expected as this new method is
closely related to the WKB method (see Appendix A). With this new
method we were able to obtained eigenenergies with very few iterations.

(c) Potentialv(x) = x4+ i Ax.
The last illustration is the PT symmetric complex potentialv(x) =

x4+ i Ax. There have been great interest in PT symmetric complex
potentials with real positive energy spectra as it was found that quantum
field theories analogous to the quantum mechanical theory for them have
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Table II. Comparison Between the Exact Numerical Values and the
Calculated Values forv(x) = x4 + 0.1x2 (h = 0.01)

n Exact Calculated Error

0 0.0037029004 0.003710245 −0.001983472
1 0.01189426805 0.0118957944 −0.000128327
2 0.02140481142 0.0214050053 −9.05778E-06
3 0.0318761422 0.0318762039 −1.93562E-06
4 0.0431371927 0.0431372167 −5.56364E-07
5 0.055079058 0.0550790694 −2.06975E-07

10 0.122853411 0.1228534114 −3.25591E-09
20 0.287168691 0.2871686914 −1.39291E-09
30 0.478767632 0.4787676320 0
40 0.691271268 0.6912712677 4.33983E-10
50 0.921110458 0.9211104577 3.25694E-10

100 2.266962730 2.266962729 4.41119E-10

amazing properties (Benderet al., 2001). For small values ofA, all en-
ergy levels are real and positive. However, ifA increases beyond threshold
values, adjacent pairs of energy levels coalesce and then become com-
plex (Benderet al., 2001). In order to solve Schroedinger equation for this
potential, one has to carry out the integration not along the real axis but
along anti-Stokes lines (Benderet al., 2001). However, in this study we
found that the numerical method introduced in this paper is very suitable
for solving such systems with less complications.

For this potential, there are four turning points, all of them are com-
plex (see Fig. 2). We evaluated the contour integral with a rectangular
contour enclosing two lower turning points as shown in Fig. 2. When

Table III. Comparison Between the Exact Numerical Values and the
Calculated Values forv(x) = x4 + 10x2 (h = 0.01)

n Exact Calculated Error

0 0.031630272 0.0316302701 6.0069E-08
1 0.0949057972 0.0949057949 2.42346E-08
2 0.158211261 0.1582112595 9.48099E-09
3 0.221546625 0.2215466237 5.86784E-09
4 0.284911849 0.2849118476 4.9138E-09
5 0.348306893 0.3483068916 4.01944E-09

10 0.665728031 0.6657280297 1.95275E-09
20 1.302784329 1.3027843275 1.15138E-09
30 1.942760925 1.9427609238 6.17678E-10
40 2.585620837 2.5856208356 5.41456E-10
50 3.231328273 3.2313282714 4.95152E-10

100 6.501401680 6.5014016789 1.69194E-10
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Fig. 2. The four complex turning points for the potentialv(x) = x4 + i Ax are shown.
The contour encloses only the middle two turning points marked with solid circle (•).
The other two turning points which are on the imaginary axis are kept outside the
contour of integration.

the contour was kept away from turning points which are located above
and below, this method produced accurate real positive eigenvalues. How-
ever, for the first two eigenvalues, this method did not converge. As for the
previous potential, the accuracy of the calculation increased with higher
excited states. The results are shown in Table IV.

Table IV. Comparison Between the Exact Numerical Values and the
Calculated Values forv(x) = x4 + i Ax (h = 0.01)

n Exact Calculated Error

2 0.0165265275 0.0164755069 0.003087194
3 0.0254315237 0.0254341551 0.00010347
4 0.0353335816 0.0353334087 4.89336E-06
5 0.0460201330 0.0460201279 1.10821E-07

10 0.1084473067 0.1084473048 1.752E-08
20 0.2642551559 0.2642551538 7.94686E-09
30 0.4487085662 0.4487085638 5.34868E-09
40 0.6548295643 0.6548295617 3.9705E-09
50 0.8787998557 0.8787998492 7.39645E-09

100 2.1996949309 2.199694923 3.59141E-09
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5. DISCUSSION

In this paper we presented a new quantization method for 1-D systems.
The semiquantum momentum function, defined in this paper links classical me-
chanics with quantum mechanics in 1-D, systematically, starting fromp0 being
classical momentum function to limn→∞ pn being purely a quantum mechani-
cal quantity which is directly related to the quantum wave function. With three
illustrations, we demonstrated the validity and the applicability of the method for
various types of potentials. Although we have not given a rigorous proof for the
convergence of the method, discussion given in Appendix A and the illustrations
show how to choose contours on whichpn andJn are convergent.

APPENDIX A

In this appendix we discuss the convergence of the sequence of SQMFpn

and SQAVJn. First we compare the SQMF with usual WKB expansion. This is
useful when we discuss the convergence later in this section.

Since the expansion of any order (> 0) of SQMF contain all the powers ofh,
nth order SQMF is not the same as thenth order WKB. However, they are related
in an interesting manner. The usual WKB expansion of potentialv(x) is

p̃(x, E) = p̃0+ hp̃1+ h2 p̃2+ · · · hn p̃n + · · · (A1)

Please note that̃p(x, E) here corresponds to the derivative of the action in the
usual WKB ansatz, where

p̃0 =
√

E − v(x),

p̃1 =
−iv ′

4(E − v)
,

p̃2 =
(5v′2+ 4Ev′′ − 4vv′′)

32(E − v)5/2
,

p̃3 =
15iv ′3

64(E − v)4
+ 9iv ′v′′

(E − v)3
+ iv ′′′

16(E − v)2
,

p̃4 = −
{

1105v′4

2048(E − v)11/2
+ 221v′2v′′

256(E − v)9/2
+ 19v′′2

128(E − v)7/2

+ 7v′v′′′

32(E − v)7/2
+ 9v(4)

32(E − v)5/2

}
(wherev(4) is the forth derivative ofv with respect tox) and so on. Here we have
given the first five terms in the WKB expansion explicitly. Now we expand the
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first five terms of the SQMF in powers ofh.

p0 =
√

E − v(x),

p1 =
√

E − v(x)− iv ′h
4(E − v)

+ v′2h2

32(E − v)5/2
+ iv (3)h3

128(E − v)4

− 5v(4)h4

2048(E − v)11/2
+ O(h5),

p2 =
√

E − v(x)− iv ′h
4(E − v)

+ (5v′2+ 4Ev′′ − 4vv′′)h2

32(E − v)5/2

+
[

5iv (3)

64(E − v)4
+ iv ′v′′

16(E − v)3

]
h3−

[
97v′4

2048(E − v)11/2

+ 3v′2v′′

64(E − v)9/2
+ v′′2

128(E − v)7/2

]
h4+ O(h5),

p3 =
√

E − v(x)− iv ′h
4(E − v)

+ (5v′2+ 4Ev′′ − 4vv′′)h2

32(E − v)5/2

+ 15iv ′3h3

64(E − v)4
+ 9iv ′v′′h3

32(E − v)3
+ iv (3)h3

16(E − v)2

− 465v′4h4

2048(E − v)11/2
− 77v′2v′′h4

256(E − v)9/2
− 5v′′2h4

128(E − v)7/2

− 3v′v(3)h4

64(E − v)7/2
+ O(h5),

and

p4 =
√

E − v(x)− iv ′h
4(E − v)

+ (5v′2+ 4Ev′′ − 4vv′′)h2

32(E − v)5/2
+ 15iv ′3h3

64(E − v)4

+ 9iv ′v′′h3

32(E − v)3
+ iv (3)h3

16(E − v)2
− 1105v′4h4

2048(E − v)11/2
− 221v′2v′′h4

256(E − v)9/2

− 19v′′2h4

128(E − v)7/2
− 7v′v(3)h4

32(E − v)7/2
− v(4)h4

32(E − v)5/2
+ O(h5).

By comparing expressions of SQMF with the WKB expansion, the following
observations can be made.

The firstn coefficients ofpn are the same as firstn coefficients of the WKB
expansion. That is, ifan,m is the coefficient of thehm term in thenth order SQMF,
thenan,m = mth order WKB term for∀m < n. In other words,the expansion of
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nth order SQMFs contain all the terms of nth order WKB expansion, in addition
to the terms of higher powers ofh. By using this observation, we propose the
following result.

When h < 1, the sequence of SQMFs{pk, k = 0, 1, 2,. . .n} converges
uniformly in a domain where| i h∂pk/∂x

p2
0
| < 1 fork = 0, 1, 2,. . .n. The simple proof

for this result can be given. The above condition implies thatpn(x) can be expanded
in a power series ofh.

p(x, E) = p0+ ha1+ h2a2+ · · · hnan + · · ·
where

an = −
[

i ∂pn−1/∂x

p2
0

]
bn bn = 1.3 . . . (2n− 5)

2.4.6 . . .2(n− 1)

Now consider the WKB expansion (18). LetSn, be thenth partial sum of the
above series. Previously in this appendix we concluded that the firstn terms of
the expression forpn is the same as thenth partial sum of the WKB expansion.
Hence

[ pn − Sn] = −
[

i h∂pk/∂x

p2
0

]n+1

bn+1−
[

i h∂pk/∂x

p2
0

]n+2

bn+2− · · ·

Therefore lim[pn − Sn] = 0 asn→∞ and consequently limpn = lim Sn. Since
WKB partial sumsSn converges uniformly tõp whenx is not near turning points,
pn converges tõp as well.

APPENDIX B

In this appendix we express the functionsξ (η) in terms of the derivatives
of η. The functionsξ (η) are defined asξr (η) ≡ ∂r√η

∂xr . The functionsξn(η)
for n = 1, 2,. . .6 are given below.

ξ1(η) = η′(x)

2
√
η(x)

ξ2(η) = −η
′(x)2

4η(x)3/2
+ η′′(x)

2
√
η(x)

ξ3(η) = 3η′(x)3

8η(x)5/2
− 3η′(x)η′′(x)

4η(x)3/2
+ η(3)(x)

2
√
η(x)

ξ4(η) = −15η′(x)4

16η(x)7/2
+ 9η′(x)2η′′(x)

4η(x)5/2
− 3η′′(x)2

4η(x)3/2
− η

′(x)η(3)(x)

η(x)3/2
+ η(4)(x)

2
√
η(x)



P1: GXB

International Journal of Theoretical Physics [ijtp] pp543-ijtp-376835 July 13, 2002 17:16 Style file version May 30th, 2002

New Quantization Method for Evaluation of Eigenenergies 1367

ξ5(η) = 105η′(x)5

32η(x)9/2
− 75η′(x)3η′′(x)

8η(x)7/2
+ 45η′(x)η′′(x)2

8η(x)5/2
+ 15η′(x)2η(3)(x)

4η(x)5/2

− 5η′′(x)η(3)(x)

2η(x)3/2
− 5η′(x)η(4)(x)

4η(x)3/2
+ η(5)(x)

2
√
η(x)

ξ6(η) = −945η′(x)6

64η(x)11/2
+ 1575η′(x)4η′′(x)

32η(x)9/2
− 675η′(x)2η′′(x)2

16η(x)7/2
+ 45η′′(x)3

8η(x)5/2

− 75η′(x)3η(3)(x)

4η(x)7/2
− 45η′(x)η′′(x)η(3)(x)

2η(x)5/2
− 5η(3)(x)2

2η(x)3/2

+ 45η′(x)2η(4)(x)

8η(x)5/2
− 15η′′(x)η(4)(x)

4η(x)3/2
− 3η′(x)η(5)(x)

2η(x)3/2
+ η(6)(x)

2
√
η(x)
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Bozzolo, G., Núnez, J., and Plastino, A. (1982).Journal of Physics A: Mathematical and General15,

429.
Caliceti, E., Grecchi, V., and Maioli, M. (1996).Communications in Mathematical Physics176, 1, and

references therein.
Cooper, F., Dawson, J., and Shepard, H. (1994).Physics Letters A187, 140.
Delabaere, E., Dillinger, H., and Pham, F. (1997).Journal of Mathematical Physics38, 6126.
Delabaere, E. and Pham, F. (1997).Annals of Physics261, 180.
Fanelli, R. and Struzynski, R. E. (1983).American Journal of Physics51, 561.
Fernández, F. M., Guardiola, R., and Ros, J. (1998).Computer Physics Communications115,

170.
Flessas, G. P., Whitehead, R. R., and Rigas, A. (1983).Journal of Physics A: Mathematical and General

16, 85.
Guardiola, R., Sol´ıs, M. A., and Ros, J. (1992).Nuovo Cimento B107, 713.
Halperin, J. (1995).Annals of Physics244, 445.
Hautot, A. (1986).Physical Review D: Particles and Fields33, 437.
Ince, E. L. (1927). Ordinary Differential Equations, Longmans, London.
Kaluza, M. (1994).Computer Physics Communications79, 425.
Leacock, R. A. and Padgett, M. J. (1983a).Physical Review Letters50, 3.
Leacock, R. A. and Padgett, M. J. (1983b).Physical Review D: Particles and Fields28, 2491.
Nanayakkara, A. (1990).Journal of Physics A: Mathematical and General23, 2055.
Simon, B. (1970).Annals of Physics58, 76.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp543-ijtp-376835 July 13, 2002 17:16 Style file version May 30th, 2002

1368 Nanayakkara and Ranatunga

Sinha, A., Roychoudhury, R., and Varshni, Y. P. (1996).Canadian Journal of Physics74, 39.
Turbiner, A. V. and Ushveridze, A. G. (1988).Journal of Mathematical Physics29, 2053.
Wolfram, S. (1988).Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley,

Reading, MA.
Znojil, M. (1983).Journal of Mathematics and Physics24, 1136.
Znojil, M. (1991). InRigorous Results in Quantum Mechanics, J. Dittrich and P. Exner, eds., World

Scientific, Singapore, pp. 113–122.


