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A quantum dynamical equation is constructed as the limit of a sequence of functions
(called Semigquantum momentum functions or SQMF). The quantum action variable
J is defined as the limit of the sequence of contour integrals of SQMFs such that the
guantization condition is] = nh, wheren is a nonnegative integer for eigenvalues
and a noninteger for off eigenvalues. This quantization condition is exac andn
analytic function of energy. Based on new definitions, an accurate numerical method
is developed for obtaining eigenenergies. The method can be applied to both real and
PT symmetric complex potentials. The validity and the accuracy of this new method is
demonstrated with three illustrations.
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1. INTRODUCTION

During last few decades, various exact and approximation methods have been
developed for solving 1-D quantum mechanical systems. They include Rayleigh—
Schroedinger expansions summed by means of different techniques (&rtdca
1990; Calicetiet al, 1996; Ferahdezet al, 1998; Simon, 1970), variational
procedures (Bozzolet al, 1982), adjustable frequency iteration (Fanelli and
Struzynski, 1983), distributed Gaussian basis (Batsa., 1983), Laplace trans-
form (Flessast al, 1983), strong coupling expansions (Guardietal.,, 1992;
Turbiner and Ushveridze, 1988), continued fractions (Znajil, 1983) related to the
Hill determinant method (Hautot, 1986; Znojil, 1991), supersymmetry combined
with variational (Coopeet al, 1994) or WKB (Sinheet al, 1996) techniques,
analytical Lanczos algorithm (Kaluza, 1994), semiclassical expansions comple-
mented with resurgence theory (Delabaere and Pham, 1997; Delatiagie
1997), Kolmogorov iterative technique (Halperin, 1995), and open perturbation
applied to the associated Riccati equation (Bessis and Bessis, 1997).
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The work which is relevant to this study is the method based on quantum
action variable theory developed in 1980s by LeacstcM. (Leacock and Padgett,
1983a,b). Their method is mainly suitable for exactly solvable potentials for which
the eigenenergies can be obtained without solving the dynamical equations (see
(Leacock and Padgett, 1983a,b) for more details). Their method involves evaluating
the 1-D quantum action variable (QAJ)YE) defined as

I(E) = fc p(z, E) dz 1)

where the contour C encloses the physical turning points of classical momentum
function pc(z, E) in the complexz plane, and(z, E) is the guantum momentum
function (QMF) which satisfies the equation

h /dp(z, E)
[ < 0z
where p.(z, E) is defined bypc(z, E) = VE — V(2) (assume & = 1) and the
boundstate boundary conditions imposed up¢n E) is p(z, E) — pc(z, E) as

h — 0. The bound state eigenvalue expressions of exactly solvable potentials
can be obtained without solving the dynamical equation (Leacock and Padgett,
1983a,b; Nanayakkara, 1990). This method is somewhat similar to the higher
order WKB (Benderet al,, 1977) method which also uses contour integrations
for obtaining higher order corrections to the basic Bohr—Sommerfeld quantization
(see (Bendeet al., 1977) for more details). There are two features of QAV method
relevant to the present work:

) + Pz, E) = p(z E) @)

(1) The quantum action variabli E) is not an analytic function of energy
E (It is a step-function)

(2) The application of the boundary condition is not clear when the system
is not exactly solvable

The QMF p(z, E) is related to the wave functiopr by p(z, E) = 2 242,
Therefore, the contour integral (1) gives the number of simple zerﬂswﬁich
are located between two turning points. By using oscillatory theorems on Sturm-
Liouville type equations (Ince, 1927), it can be shown that there are a finite number
of isolated zeros of (x) and hence finite number of isolated polep, E), lying
between two physical turning points for eigenvalues as well as for off eigenvalues.
Hence, the QAV is an integer valued function which gives the number of zeros of
the wave function between two physical turning points (see (Leacock and Padgett,
1983b)). As aresult, when energyaries, QAV jumps from one integer to the next
as a new zero entered inside the contour C. Consequently, QAV is not an analytic
function of E. The quantum action variable used in (Leacock and Padgett, 1983a,b;
Nanayakkara, 1990) cannot be directly employed for locating bound state eigen
states numerically when the system is not exactly solvable. The main reason for
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this drawback is thall(E) changes only when a new zerowfentered between
two turning points which does not necessarily correspond to any special energy
values such as eigenenergies.

In this paper, we reformulate quantum action variable theory in terms of se-
guence of newly defined functions (we call them semiquantum momentum func-
tions — SQMF) and corresponding sequence of contour integrals (we call them
semiguantum action variables — SQAV) such that they converge to QM)
and QAV J(E), respectively, when certain conditions are satisfied by the poten-
tial. With this new approach, we developed an accurate numerical method. This
new method is applied to solve three potentials including PT symmetric complex
potentialv(x) = x* + i Ax (Benderet al,, 2001).

The outline of the paper is as follows. In Section 2, the basic theory is de-
veloped with proper quantization conditions. Section 3 contains explicit algebraic
form of new SQMFs and a description of the numerical method. Also we discuss
the convergence and the validity of the new method. In Section 4 the accuracy of
the numerical method is demonstrated with three illustrations.

2. QUANTUM ACTION VARIABLE THEORY

For 1-D guantum mechanical system with potenti@), a sequence of func-
tions{p«(z, E)}, k =1, 2, 3,...n, is defined in the complexplane by

Po(z, E) = VE —V(2), (3)

Pn(z, E>=\/E—v(z)+ih Mg, (4)

wherepo(z, E) is the usual classical momentum function, and the Eq. (4) defines
pn(z, E) in terms of the first derivative gb,_1(z, E). Hence starting from Eq. (3),
the Eg. (4) can be used iteratively to defipgz, E) for any k. Here we have
assumed & = 1. We call these functions “semiquantum momentum functions”
rather than semiclassical momentum function, in order to distinguish them from
WKB momentum (see Appendix A). When certain conditions are satisfied by the
potential, pk(z, E) converges uniformly as — oo in the domainD(E), which is
shown in Fig. 1, wheih is less than unity. This will be discussed in detail in the
Appendix A.

Let p(z, E) be the limit of the sequence. That is

p(z, E) = nILmOO pn(z, E) Vx e D(E) (5)

For different energies, domald(E) may change, as the turning pointsm{z, E)
are functions of energy. However, for a given range of energies, a dir{@gcan
be defined such that it excludes turning points corresponding to all the energies
in the range and hence the limit in Eq. (5) exists for a range of energy values.
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Contour C

Re

Domain D(E)

Fig. 1. The complex plane onwhich the SQMF, SQAVs, and QAV are defined.
It can be shown that SQMF converges uniformly in the donfai). The
contour C in Egs. (7) and (8) is shown as a broken curve in the dobit).

Consequently, the sequeng®(z, E)}, k = 1, 2, 3,...n converges uniformly not
only in x but also inE.

The limiting functionp(z, E) is defined to be the new quantum momentum
function satisfying the equation

p(z, E)=\/E—v(z)+ihz—s (6)

Although thepk(z, E) converges uniformly t@(z, E) only in the domainD(E),
p(z, E) can be analytically continued to the entire complex plane by defining it
with the Eq. (6) for allz.

Now we define semiquantum action variables (SQAWJE), k =1, 2,
3,...n,as

1
ME) = 5 /C bz E) dz @)

where the contour C encloses the “physical” turning points of theli&MFs
and lies entirely in the domaiD(E) (see Fig. 1). Sincgx(z, E) is uniformly
convergentJ(E) is also uniformly convergent, lign, o J(E) = J(E), and the
limit J(E) satisfies the equation

J(E) = %/Cf)(z, E)dz (8)

where p(z, E) satisfies Eqg. (6) and the contour encloses the “physical” turn-
ing points of{p«(z, E)}, k=1, 2, 3,...n. Now we introduce the quantization
condition imposed upod(E) as

J(E) =nh (9)
wheren is a nonnegative integer.
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Note that by squaring both sides of Eq. (6) and rearranging it, we obtain

hap
DI B2z, E) = E - v(2) (10)
i 9z
which is equivalent to the Eq. (2), althougifz, E) is not identical top(z, E).
Identification of following features of new QMpB(z, E) and QAV J(E) is useful.

(a) The new QMF is a multivalued function gfunlike the old QMF which
is single valued.

(b) The new QAV is a nonnegative integer tintefor eigenvalues and non-
integer timesh for off eigenvalues and it is analytic function &. The
old QAV is an integer time# for all energies and it is discontinuous at
certain energies.

These features are utilized when the numerical methods are developed.

3. ANALYTIC FORM OF SQMF
The algebraic form ofy(z, E) is given by Eg. (3);

Po(z, E) = VE - V(2

Starting with Eq. (3) and using Eq. (4) iteratively, we obtain

v'(2)

p1(z, E):\/E—v(z)—ih2p0

(11)

.. 0P . apy ( \4 ihv?2 ihv’ )
z,Ez\/E—vz+|h— with — = — + —+—).
P2z, E) @ 0z 2p1 8pip1r 4pops

A
(12)

With mathematical packages such as Mathematica (Wolfram, 1988), it is easy to
obtain exact algebraic expressions up to any order of SQAV.

Now we are going to describe how to use new definitions to obtain eigenvalues
for a given quantum system. When the orderpat four or above (i.ek > 4), itis
hard to implement the algebraic expressiongk, E) directly into a computer
code. The reason for this difficulty is that the expressions become so huge and
complicated that there is no easy way of breaking them (specially the square
roots) into simpler expressions. However, the recurrence relatigns(of Eq (4))
can easily be implemented by writing them in terms of new functigs) and
nk(x, E), k=0, 1,...n, which are suitable for computer implementations. The
newéx(n) andnk(x, E) are functions opg(x, E) and the derivatives of the potential.
The explicit forms o0&, &1, &2, &3, &4, andés are given in Appendix B.
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The algebraic expressions of the quantum momentum function along with the
derivatives ofj(x, E)’s are given below. The zeroth order SQMF can be written as

Po = /10 (13)

whereng = p3 = E — v(x). The derivatives ofj, can be written in terms of the
derivative of the potential

*no(x, E) _ d“v(x)

K = " gkx k=1,2,...n (14)
wherev(x) is the potential. Theth order SQMFp; (X, E) is given by
Pr= (15)

wheren, = no + ih&1(nr_1) and the derivatives of; are

3k77r (X! E) 3k7lo(x, E)
axk  gxk
whereé& (n) = a;x,ﬁ and explicit forms ofé(n) for k =1, 2,...6 are given in
Appendix B.

Using Egs. (13), (14), (15), and (16), one can write the SQMFs up to any order
in terms of the classical momentum function and the derivatives of the potential.
Note that the firsh derivatives of;g are needed to write theh order SQMF. Note
also that in evaluating the semiquantum momentum functions, the derivatives of
n or &(n) are calculated analytically, not numerically.

+ih&a(ne—1) (16)

4. ILLUSTRATIONS: BOUND STATE ENERGIES

In this section, we present results obtained by applying the new quantization
method described in the previous section to three different type of potentials.

(a) Potential(x) = x> + & with a? = 0.1.
This system is exactly solvable (Nanayakkara, 1990) and the quan-
tum action variable is

2
E h y&+4§
=3 s )

For this potential there are four real turning points, two of them on the
positive real axis while the other two are on the negative real axis. Here
we have the freedom to choose any contour enclosing two turning points
on the positive real axis which excludes the origin= 0) where the
potential has a singularity. This system is studied with 7th order SQMF
and the contour integration is evaluated with a rectangular contour. The
results are presented in the Table I. The table shows that the error is less
than 101° for a 7th order calculation.
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Table l. Comparison Between the Exagt and the Calculated Boundstate
Energies of the Potentia(x) = x2 + %2 (h = 0.001 anda? = 0.1)

n Exact energy Calculated energy Error
0 0.6344563226025  0.6344563226025 <1011
1 0.6384563226025 0.6384563226025 <1011
2 0.6424563226025 0.6424563226025 <1011
3 0.6464563226025 0.6464563226025 <1011
4 0.6504563226025  0.6504563226025 <1011
5 0.6544563226025 0.6544563226026 ~1010
6 0.6584563226025  0.6584563226026 ~1010
7 0.6624563226025  0.6624563226026 ~1010
8 0.6664563226025  0.6664563226026 ~10-10
9 0.6704563226025  0.6704563226026 ~1010

=
o

0.6744563226025 0.6744563226026 ~10~10

Note thatin this numerical method, SQMF has to be evaluated only at
the points of the contour and therefore itis computationally less expensive.
Potential(x) = x* + bx.

This system cannot be solved exactly. For this potential, there are
four turning points: two of them are on the real axis and the other two are
on the imaginary axis.

—b+ Vb +4E e | b+ +/b%+4E "2

Here we choose a contour of integration to enclose two real turning points
and to exclude the turning points on the imaginary axis. In this region the
sequenced, and J, converges rapidly. The results of the calculations
carried out with 7th order SQMF for this potential are presented in the
Tables Il and Ill.

The calculations were carried out for two values of the coupling para-
meterb. The exact eigenenergies of this potential were obtained by
expanding the wave function in simple harmonic basis and solving the
corresponding matrix eigenvalue problem. As shown in the Tables II
and Ill, the accuracy of the calculation increases with the quantum num-
bern. This asymptotic behavior can be expected as this new method is
closely related to the WKB method (see Appendix A). With this new
method we were able to obtained eigenenergies with very few iterations.
Potential(x) = x* + i Ax.

The last illustration is the PT symmetric complex potentigd) =
x*+iAx. There have been great interest in PT symmetric complex
potentials with real positive energy spectra as it was found that quantum
field theories analogous to the quantum mechanical theory for them have
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Table 1l. Comparison Between the Exact Numerical Values and the
Calculated Values for(x) = x* + 0.1x2 (h = 0.01)
n Exact Calculated Error
0 0.0037029004 0.003710245 —0.001983472
1 0.01189426805 0.0118957944 —0.000128327
2 0.02140481142 0.0214050053 —9.05778E-06
3 0.0318761422 0.0318762039 —1.93562E-06
4 0.0431371927 0.0431372167 —5.56364E-07
5 0.055079058 0.0550790694 —2.06975E-07
10 0.122853411 0.1228534114 —3.25591E-09
20 0.287168691 0.2871686914 —1.39291E-09
30 0.478767632 0.4787676320 0
40 0.691271268 0.6912712677 4.33983E-10
50 0.921110458 0.9211104577 3.25694E-10
100 2.266962730 2.266962729 4.41119E-10

amazing properties (Bendet al, 2001). For small values o4, all en-
ergy levels are real and positive. HoweveAihcreases beyond threshold
values, adjacent pairs of energy levels coalesce and then become com-
plex (Bendeetal, 2001). In order to solve Schroedinger equation for this
potential, one has to carry out the integration not along the real axis but
along anti-Stokes lines (Bendet al,, 2001). However, in this study we
found that the numerical method introduced in this paper is very suitable
for solving such systems with less complications.

For this potential, there are four turning points, all of them are com-
plex (see Fig. 2). We evaluated the contour integral with a rectangular
contour enclosing two lower turning points as shown in Fig. 2. When

Table lll. Comparison Between the Exact Numerical Values and the
Calculated Values for(x) = x* 4+ 10x? (h = 0.01)

n Exact Calculated Error
0 0.031630272 0.0316302701 6.0069E-08
1 0.0949057972 0.0949057949 2.42346E-08
2 0.158211261 0.1582112595 9.48099E-09
3 0.221546625 0.2215466237 5.86784E-09
4 0.284911849 0.2849118476 4.9138E-09
5 0.348306893 0.3483068916 4.01944E-09
10 0.665728031 0.6657280297 1.95275E-09
20 1.302784329 1.3027843275 1.15138E-09
30 1.942760925 1.9427609238 6.17678E-10
40 2.585620837 2.5856208356 5.41456E-10
50 3.231328273 3.2313282714 4.95152E-10
100 6.501401680 6.5014016789 1.69194E-10
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Fig. 2. The four complex turning points for the potentigk) = x* + i Ax are shown.
The contour encloses only the middle two turning points marked with solid cikle (

>
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The other two turning points which are on the imaginary axis are kept outside the
contour of integration.

the contour was kept away from turning points which are located above
and below, this method produced accurate real positive eigenvalues. How-
ever, for the first two eigenvalues, this method did not converge. As for the
previous potential, the accuracy of the calculation increased with higher
excited states. The results are shown in Table IV.

Table IV. Comparison Between the Exact Numerical Values and the
Calculated Values fov(x) = x* +iAx (h = 0.01)

n Exact Calculated Error
2 0.0165265275 0.0164755069 0.003087194
3 0.0254315237 0.0254341551 0.00010347
4 0.0353335816 0.0353334087 4.89336E-06
5 0.0460201330 0.0460201279 1.10821E-07
10 0.1084473067 0.1084473048 1.752E-08
20 0.2642551559 0.2642551538 7.94686E-09
30 0.4487085662 0.4487085638 5.34868E-09
40 0.6548295643 0.6548295617 3.9705E-09
50 0.8787998557 0.8787998492 7.39645E-09
100 2.1996949309 2.199694923 3.59141E-09
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5. DISCUSSION

In this paper we presented a new quantization method for 1-D systems.

The semigquantum momentum function, defined in this paper links classical me-
chanics with quantum mechanics in 1-D, systematically, starting fogribeing
classical momentum function to lim, p, being purely a quantum mechani-
cal quantity which is directly related to the quantum wave function. With three
illustrations, we demonstrated the validity and the applicability of the method for
various types of potentials. Although we have not given a rigorous proof for the
convergence of the method, discussion given in Appendix A and the illustrations
show how to choose contours on whiphand J, are convergent.

APPENDIX A

In this appendix we discuss the convergence of the sequence of SRQMF

and SQAV J,. First we compare the SQMF with usual WKB expansion. This is
useful when we discuss the convergence later in this section.

Since the expansion of any order@) of SQMF contain all the powers of

nth order SQMF is not the same as tiith order WKB. However, they are related
in an interesting manner. The usual WKB expansion of potewfiglis

p(x, E) = Po+ hp, + h2p, +---h"p, + - (A1)

Please note thagb(x, E) here corresponds to the derivative of the action in the
usual WKB ansatz, where

Po = v E — v(x),

N —iv’
L= 2E—vy
. (5?4 4EV — 4wV
P2= " vz
N 15v" giv'v”’ iv”
Ps= GaE—v)F T (E—v)® T 16E —v)2’
) 1105/ 2212y 10072
Pa=— {2048(E vz T 256E —v)92 T 128€ —v)2
A v
32(E V)2 | 32E - v)5/2}

(wherev® is the forth derivative of with respect tox) and so on. Here we have
given the first five terms in the WKB expansion explicitly. Now we expand the
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first five terms of the SQMF in powers bf

pO = m,
iv'h v2h? ivOh?
Po=VE —V0) ~ 2E ) F 32E —vp? T 128 — v
@ p?
5vi®h + O(hS),

 2048E — v)11/2
iv'h (5v2 + 4EV’ — 4vv")h?
= E —_ —_
Pe=VE-VX - 3E— T T mE v

5iv® N iv'v’ 3 o
64(E — v)* ' 16(E — v)3 2048 — v)11/2

3V/2V// V//Z
teaE Vo2 T 128€ — )2

iv'h (5v? + 4EV’ — 4vVv")h?
- JE —v(x) -
Ps VO -2E—w T 3E e

} h* + O(h®),

N 15iv3hs N giv/v’h3 N iv@n3
64(E —v)*  32(E —vV)3 16(E — v)?
465//4 h4 77\//2\/// h4 5V//2 h4
© 2048E — V)12 256(E — V)92 128(E — v)7/2
3v'v@®ht
-+ 0(hY),
saE —vyz T oM

and

ivh (V2 4+4EV — 4w)h?  15v3h3
= JE—v(x) —
Pa VO - zE—w T mE—vz T eaE vy

N giv'v’h3 N iv®h3 1105/4h* 221v'2y" h*
32(E —v)®  16(E —Vv)2 2048 —v)¥2 256(E — V)92
19\///2 h4 7V/V(3) h4 V(4) h4
+ O(h).

~ 128E — V)2 32(E V)2 32(E — V)52

By comparing expressions of SQMF with the WKB expansion, the following
observations can be made.

The firstn coefficients ofp, are the same as firgtcoefficients of the WKB
expansion. That is, #, , is the coefficient of thé™ term in thenth order SQMF,
thena, m = mth order WKB term forvm < n. In other wordsthe expansion of



1366 Nanayakkara and Ranatunga

nth order SQMFs contain all the terms of nth order WKB expansion, in addition
to the terms of higher powers &f By using this observation, we propose the
following result.

When h < 1, the sequence of SQMRgk, k=0, 1, 2,...n} converges
uniformly in a domain whergd"®P/%| < 1 fork = 0, 1, 2,...n. The simple proof
for this result can be given. The above condition implies faét) can be expanded
in a power series df.

p(X1 E)=po+ha1+h2a2+...h“an+,_,

where

i 0pn_1/0X 3...(2n-5)
= - —— b = -
&n [ 02 ] " T 326.. 20—

Now consider the WKB expansion (18). L8t, be thenth partial sum of the
above series. Previously in this appendix we concluded that thenftesims of
the expression fop, is the same as theth partial sum of the WKB expansion.
Hence

ihape/ax "t ihape/ax "2
[pn—S1] =_|:p7k/:| bn+1— |:p7k/

pg 2 :| bn+2—"'

Po
Therefore limp, — §] = 0 asn — oo and consequently lipp, = lim S,. Since
WKB partial sumsS, converges uniformly t@ whenx is not near turning points,
pn converges t@ as well.

APPENDIX B

In this appendix we express the function) |n terms of the derivatives
of n. The functlonsg(n) are defined a<;(n) = . The functionsé&n(n)
forn=1, 2,...6 are given below.

- BX'

_ 1)
&1(n) = 2 /00
_ ' n"(x)
%00 = 292 * 271090
£3(n) = 3n'(x)° ~ 3n'(X)n"(x) nd(x)
= 8n(x)%/2 4n(x)3/2 27700
Ea(n) = —15r]/(x)4 gn/(x)zn//(x) 377//()()2 n/(x)n(3)(x) 77(4)(X)

6n(x)772 * 4p(x)52  Ap(x)¥2 p(x)¥2 " 2m(x)
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1057'(x)°  750'(x)*n"(x) | 450'(x)n"(x)* 150 (x)*n(x)

500 = 320097 ~ " 8n(x)772 81 (x)572 I (x)5P2
5100900 5 n9x)  1O(x)
20 a2 200
9a5/(x)°  1575/(%(<) 675/ ()2 | 45y(x)°
W00 = G0z T 392 1ei)72 T Ba(p”
750N 45000 00nI)  5rO(x)?
4n(x)7/? 2n(x)5/2 2n(x)%/2
2570900 1570900 37000 190)
81(x)>/2 4n(x)3/2 2n(x)%/2 2/n(x)
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